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1. INTRODUCTION AND NOTATION

The main purpose of this paper is to give an approximation-theoretic
approach to some imbedding problems treated in Euclidean n space by
Stein [10] and Wheeden [IS]. In particular, we are interested in equivalent
norms for the space of Bessel potentials L~P for all p, I ~ p ~ 00, and all
IX > 0, in terms of hypersingular integrals; these results will be derived in a
unified way.

Observing that L~P is the Favard class of a large set of radial approximation
processes, we will show that the equivalence of the La.P norm with the norm
involving appropriate hypersingular integrals can be interpreted as a satura
tion problem. Actually, the hypersingular integral in question (smoothened
in some sense) can be rewritten as an approximation process on f minus f
multiplied by the optimal or saturation order of this process [see formulas
(2.6) and (2.7)]. By verifying the hypothesis of a general saturation theorem
(see Lemma 2.2) in this particular case, we first arrive at an equivalence
relation with the L~P norm which, however, is not of the desired form. But
by using some elementary estimates of Salem-Zygmund type [8] we can
sharpen this result and obtain one implying Stein's [10] as well as parts of
those of Wheeden [IS].

An application of the Marcinkiewicz-Mikhlin multiplier theorem will
establish a connection between coordinatewise and radial hypersingular
integrals in the reflexive case I < p < 00 (see also [13]).

Furthermore, if in the same case I <p< 00 one inserts in the hypersingular
integral a homogeneous function of degree zero, integrable on the unit
sphere, the imbedding of this modified hypersingular integral into L~P

corresponds to a multiplier problem in Fourier transform. This will be
solved only for IX > [nI2] + I by applying the Marcinkiewicz-Mikhlin
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multiplier theorem in its version due to Hormander [6]. The case
o < IX ~ [nI2] + 1 could be treated by tedious computations along the
lines of Wheeden's [15] calculations, and will beomitted.

Here we are only interested in imbedding theorems for the space L,l,
and therefore we restrict ourselves to norm statements; pointwise analogs
may be obtained by properly modifying Wheeden's [15] proof.

Before proceeding further we list some conventions and notation to be
used. Let N be the set of positive integers, x = (Xl , ... ,xn) a point in Euclidean
n space En' ek the point X with all XJ = 0 except for Xk which is l,j = (jl ,... ,jn)
an n-tuple of nonnegative integers. We set x . Y = L;=l XkYk , I X 12 = X . x,
x' = xii x I (I x I > 0).1: is the unit sphere I x I = 1, x J = xiI '" X~fl, and
Ij I = jl + ... + jn . Constants will be denoted by C; one or more subscripts
may indicate quantities on which it depends. [IX] denotes the largest integer
less than or equal to IX. £P(En) is the space of (Lebesgue-) measurable
functions/for which the norm II/lip is finite. Here

II/lip = \I If(x) Iv dxr/
p

, I ~ p < 00, 11/1100 = ess sup If(x) I.
~ ~ XE~

M is the set of bounded measures fJ. normed by II dfJ. 111 = f I dfJ. I (integrals
without limits are taken over all ofEn), C is the space of uniformly continuous
bounded functions f, with II/lie = sup", If(x) I. Defining the convolution
of fJ. E M and/E £P by

/ * dfJ.(X) = (21T)-n/2 I f(x - y) dfJ.(Y),

we have II/ * dfJ. lip ~ II/lip II dfJ. 111 for 1 ~ p ~ 00.

The s-th difference (s EN) of a measurable function / and the s-th central
difference off, with increment U E En , are given by

respectively. Finally, the Fourier-Stieltjes transform of fJ. E M and the
Fourier transform of/E V are defined by

respectively.
Let IX > 0; then
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is called the Bessel kernel of order ex; here G ;;, 0),

Km = ~Ll1m - 111m
11 2 sin f37T '

00 W2)1J+2m
111m= "tom! F(f3 + m + 1)

are the modified Bessel functions of order f3 of the third and first kind,
respectively.

Ga. is a nonnegative, integrable function [7, p. 341] with JG,.(x) dx = (27T)n/2;
its Fourier transform is given by

With the aid of the n-dimensional Bessel kernel Ga., the space of radial
Bessel potentials is defined by (ex > 0)

L p = If LP'f= G ldp" p,EM, if p = 1 I
a. E, a. * h, hELP, if 1 < P ~ 00 \ .

As usual, La.P is normed by

Ilflll.a. = II dp, IlrCp = 1), III11M = II h lip (1 < p ~ (0).

(1.1)

This (radial) space LIXP will be compared, in case 1 < P < co, with (Yk > 0)

hk EU, 1 <p ~ 00, k = 1,... , n}. (1.2)

(For the sake of simplicity we omit the case p = 1.) Here IGIX is the one
dimensional Bessel kernel, and

(IGIX *g)(k)(X) = (27T)-1/2 r g(x - TJek)lGa.(TJ) dTJ
-00

is the convolution in the k-th coordinate. Li1'l' ....1'n) is normed by

n

1I/IIp.(1'1.....1'n) = L II hk II'P •
k=l

2. HYPERSINGULAR INTEGRALS ON £11, 1 ~ p ~ 00

In this section we introduce the hypersingular integral

(2.1)
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equip it with a suitable norm, and show that this norm is equivalent to the
L,/' norm for all ex > 0 and all p, 1 ~ p ~ 00. Actually we shall prove the
following

THEOREM 2.1. Thefollowing norms on Lex", are equivalent for n = 1,2,... ,
(X> 0:

(a) In case 1 ~p ~ 00:

(i) Ilfll",ex,

(ii) Ilfll" + SUPT>O II flY l-n-ex.1;S KT *f dy II" (0 < IX < 2s, SEN),

where the smoothening kernel K T , a linear combination of Weierstrass
kernels, is given by

(b) In case 1 < p < 00, (iii) converges as € ---+ 0+, and we have as another
equivalent norm

(iii)* Ilfll" + II flY l-n-ex.1;sf dy II" .

This remains true for p = 1, provided the measure fL E M in (1.1) is absolutely
continuous.

Remark. Since the kernel! y I-n-ex and the domains of integration are
radial, we may replace the (2s)-th central difference .1:sf in (iii) and (iii)* by

~ (~) 1 (~)~o(-l)k m !(x+(s-m)y)-2(-I)S s lex).

In this form for s = 1, 0 < ex < 2 and 1 < P < 00, the equivalence of (i)
and (iii)* is already in Stein [10]. Wheeden [IS] proves Stein's theorem for
1 ~ p ~ 00 [in the modified version of (iii) if p = 00] and can replace
I y I-n-ex by D(y') Iy I-n-ex in case I < P < 00 (This will be discussed in
Section 3). He also states an equivalence relation in case ex ;): 2, whereby
his hypersingular integral involves as regularization process a Taylor
expansion offwhereas a higher difference offwill be used by us. The advan
tage of our approach is that we need not distinguish between various ex

intervals and different p values. With the help of these general results we
then obtain more specific ones depending on further properties, such as
the reflexivity of L" (1 <p < 00) or, in casep = 1, the absolute continuity
of fL.
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Proof of Theorem 2. 1(a). First we show the equivalence of (i) and (ii) by
applying a general saturation theorem. To this end, we observe that

(2.2)

is absolutely convergent for all x (T > 0 fixed) and all fE LP, I ~ p ~ 00.
Indeed, split up fix) into two terms

(f + f )Iy I-n-~ .J~8KT *I(x) dy = I/(x) + IT2(x).
IlIkl 1111;;>1

Obviously, I T 2 converges absolutely, since K T E LP' and thus

by Holder's inequality. Concerning I T1, let us expand .J:8K T into a Taylor
series at the point y = O. On account of the identity

28 (2s)L (_l)m (s - m)! = 0
m~O m

(0 ~ I ~ 2s - 1), (2.3)

all derivatives of .J;8 K T of order less than 2s vanish at y = O. Therefore,

x f: (l - 7])28-1 ~ yiDlliKix + (s - m) Y7]) d7], (2.4)

where the last summation is extended over all permutations ofj with Ij I = 2s.
Observing that I yi I ~ I Y 128 and that DiKT belongs to all LP' spaces,
1 ~ p' ~ 00, we can show as before that 1/, too, converges absolutely for
fixed T > O.

To show the equivalence of (i) and (ii) we now need the following
saturation result (see [14]):

LEMMA 2.2. Let 1 ~ p ~ 00; let fEe in case p = 00, and let f E LP in case
1 ~p < 00. Define,for p > 0

Iif; x) = (2?T)-n j 2fI(x - y) dv{py), vEM,
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If v satisfies the condition

there exist constants ex > 0, c =1= 0 and a measure AE M with
JdA = (27T)n j 2 such that (2.5)

[dvr (v) - 1 = c[dAr (v) I v I"

then

clllfllM ~ Ilfll", + sup II p"{Iif; .) - f} II", ~ czllfll",." (2.6)
0>0

for some constants C1 , Cz > 0, both independent off.

In order to apply Lemma 2.2, comparing the hypersingular integral in
2.1 (a-ii) with the second expression in (2.6), we observe that IT has to be of
type p"{Iif; .) - f}. Set p = 7-1/ Z and

(2.7)

the measure v" being given by (A any Lebesgue-measurable set)

where a is the discrete measure with mass (27T)n/z at the origin. Since by the
same reasoning as before (K1 , DiK1 are integrable on En)

(2.9)

is absolutely convergent, it is obvious by Fubini's theorem that v", E M.
Also, v", is normalized; for a is normalized and the inner integral in (2.9)
vanishes on account of the identity (2.3) for I = 0 and the normalization of
K 1 • It remains to verify condition (2.5): since [dar (v) = 1,

An interchange of integrations gives

[dv"r (v) - 1 = K{'(v) flY I-n-" (e(i/Z)V'lI - r(i/Z)V'1I)Z8 dy. (2.10)

If n ~ 2, we can subject the latter integral to an orthogonal transformation
(cf. [2, p. 70]) and obtain
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Since this relation is achieved for n = 1 by a simple substitution, condition
(2.5) is satisfied and hence (i) and (ii) of Theorem 2.1 are equivalent.

In case n ;?: 2, we could replace 3~8 by ,1/ (/ EN, 0 < (X < I); but then
we would have to distinguish between the cases n = 1 and n ;?: 2.

It remains to show the equivalence with (iii). Obviously, by Fatou's
lemma,

II IT 111' ~ lim inflll J 1Y I-n-" 3~8 KT*f(x) dy II
£~o+ lyl~£ l'

~liminfllKTIIIIIJ IYI-n-"3;8fdy\\, (2.11)
£~o+ Iyl~, l'

and since II KT111 ~ L~~I (~)(27T)n/2, we have estimated (ii) by (iii).
To prove the converse, we proceed analogously, relying on Butzer-Gorlich

[3] and Sunouchi [11). We have

IIJ 1 Y l-n-" 3;8fdy II ~ II J . 1 y l-n-" 3;8{KT* f - f} dy II
lyl~VT l' lyl~VT l'

+ 1'1 J IY l-n-" 3 y28
KT*fill + II IT 111' == II + 12+ 13 (2.12)

lykVT l'

so that only II and 12 have to be estimated by (ii) or, equivalently, by (i). To
this end, we need two approximation-theoretical arguments.

LEMMA 2.3. IffE L"P,/or 0 < (X < 2s, sEN, then

113;8{KT*f - f} 111' ~ C",8 T"/21IfI11l," ;

113~8 KT*fl11l ~ C"~8 T(,,-28)/2 IY 1
28 Ilf111l," .

(2.13)

(2.14)

In view of this lemma, the proof of part (a) of Theorem 2.1 is now complete
since, by the generalized Minkowski inequality and formula (2.13),

and, analogously, by formula (2.14),

1 < C* T(,,-28)/21Ifll J I Y 128-,,-n dy = C Ilfll .2 -.....::::.::: 0:,8 P.et et:.s.n V,O:':
IYI';;VT

Proof of Lemma 2.3. By a straightforward calculation,

KT* f(x) - f(x) = -(47TT)-n/2 f ,1:8 f(x) exp{- I y 1
2/4T} dy
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and hence, since f E LaP implies

(0 < ex < I) (2.15)

(see, e.g., [14]), relation (2.13) follows by the generalized Minkowski inequa
lity. Concerning (2.14), we remark that as a special case of a theorem of
Butzer-Scherer [4,5] one has

for Ij I = 2s. (2.16)

Hence, a Taylor expansion of 3:'K T *f at y = 0 gives, analogously to (2.4),

2. 2
3;' KT *f(x) = C. m~o (_l)m (~)

X s: (1 - "f})2.-1 ~ yiDuiKT *f(X + (s - m) Y"f}) d"f}.

The relations (2.16) and Iyi I ~ I Y 12
• yield the desired inequality (2.14)

with the aid of the generalized Minkowski inequality.
Now we prove (b) of Theorem 2.1 by an application of the Banach

Steinhaus theorem. LaP and LP are Banach spaces with respect to the norms
IlfilM = II h lip [where p,(A) = fA hex) dx in case p = 1] and Ilfll:v' respec
tively; the operators flul;;>. I y \-n-a... on LaP into LP, 1 :(; p < 00, are
uniformly bounded by part (a); if fE Lfl, f3 > ex, then we have strong
convergence because [cf. (2.15)]

II flY l-n-a3;'fdy II :(; elJ.• llfllp.1J flY IIJ-a-n dy
'1,,:;;lul":;;'2 :v '1,,:;;lul":;;'2

which tends to zero as €2~ 0; thus, on account of the completeness of the
LP spaces, there clearly exists g E LP such that

g = s-lim flY I-n-a 3;'fdy.
•->0 lui;;>.

Since LIJP is dense in LaP, 1:(; p < 00, the Banach-Steinhaus theorem
assures convergence for allfE L/J. Since lim.->o II lip :(; sup.>o 1I11:v and (2.11)
holds, the equivalence of (i) and (iii)* follows.

Remark 2.4. A result analogous to Theorem 2. 1(a), in the periodic, one
dimensional case, was proved by Sunouchi [12], applying a counterpart of
Lemma 2.2. He shows that

f' y-l-a 3;'f dy = C €-a{j* k. - f}
•

and verifies condition (2.5) for the kernel k•.

(2.17)
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3. THE REFLEXIVE CASE 1 < P < 00

In this concluding section we shall obtain more detailed results in the
case 1 < p < 00. To this end we first compare the above radial hypersingular
integral with a so-called coordinatewise one, i.e., an integral of the form

I
oo

-1-" J2S f(x) d7] Tle k 7].
€

We have (for 1 < p "s; 2 see [13])

THEOREM 3.1. The following expressions are norms on L"P, 1 <p < 00,

ex > 0, equivalent to those of (i)-(iii)* in Theorem 2.1:

(iv) Ilfllp.("....."l,

(v) II flip + f sup II r7]-1-" 3::.1d7] II' .
k=1 .>0 € p

Proof The equivalence of (i) and (iv) follows readily from Nikolskii's
book [7, p. 74]; he has shown, using the Marcinkiewicz-Mikhlin multiplier
theorem, that

(1 + Vk
2)"/2 (1 + I V 1

2)-"/2 (k = 1, ... , n),

(1 + I V 1
2)"/2 (f1 (1 + Vk2)"/2f1

are multipliers of type (U, U), 1 < p < 00. Thus, it remains only to
establish the equivalence of (iv) and (v). This can be done with the help of the
above multiplier theorem by comparing norm (ii) of Theorem 2.1 with a
corresponding coordinatewise one for each coordinate, and then using the
same estimates of Salem-Zygmund type as before.

However, we prefer' a proof depending on a saturation theorem for
singular integrals with product kernels and n parameters r = (r1 , ... , rn):

where

n
Ir(f; x) = (27T)-n/2J f(x- y) n dVk(rkYk),

k=1

Vk E M(E1) and r dVk = V(27T).
-00

(3.1)

For this approximation process, the following saturation result holds:
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LEMMA 3.2. Let 1 ~ p ~ 00; let fEe in casep =, 00 and let f E LP in case
1 ~p < 00. If the one-dimensionalmeasures Vk offormula (3.1) satisfy the
condition

there exist constants y" > 0, c" =1= 0 and measures A" E M(EJ

normalized to satisfy r dA" = V(27l') such that,for k = 1,... , n, (3.2)
-00

then the following norms are equivalent:

n

(ii) II flip + L sup II r~k {Ir/f; .) - f} lip,
"=1 rk>O

where

Ir/f; x) = (27l')-1(2 r f(x - 7]e") dv,,(r,,7]).
-00

As was shown by Berens-Nessel [1], such saturation theorems involving
singular integrals with decomposable product kernels are essentially one
dimensional because the condition

is equivalent to the following set of conditions:

(k = 1,... , n).

Thus, with slight modifications, the proof of Lemma 2.2 in case n = 1 gives
the desired result for each I r (f; .).

k

Now-as pointed out in Remark 2.4-Sunouchi [12] has already proved
the representation (2.17) and condition (3.2), so that the equivalence of
(iv) and (v) is obvious if we take y" = ex, k = 1,... , n.

Now let us see what happens if we replace the factor Iy I-n-" in (2.1) by
Q(y') I y I-n-", where Q is a homogeneous function of degree zero, integrable
on the unit sphere. First we consider

JQ(y') I y l-n-" Lf;8 Kr *f(x) dy (0 < ex < 2s). (3.3)

As before, this hypersingular integral converges absolutely for fixed T > O.
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For sufficiently smooth functions f (e.g., infinitely differentiable and rapidly
decreasing) we can take its Fourier transform, obtaining

K/'(v) rev) fQ(y') I y l-n - a (e(ij2)v'Y - r Uj2 )v·Y)28 dy. (3.4)

On the other hand, for such smooth functions J, we have as the Fourier
transform of IT(x)-calculated as in the proof of Theorem 2.1-

K/'(v) rev) I v la flY I-n-a (e(ij2)y , - e-(ij2)y,)28 dy. (3.5)

Comparison of formulas (3.4) and (3.5) suggests the interpretation [by
inserting I v la I v I-a in (3.4)] of

if1(v) = I v I-a fQ(y') Iy I-n-a (e(ij2)V'Y - r(ij2)v'Y)28 dy (3.6)

as a multiplier of type (U, U). Now if1(v) is a multiplier of type (V, V)
for all ex > 0 because (v' E E, the unit sphere)

I if1(v) I = I fQ(y') Iy I-n-a (eUj2 )V"Y - r(ij2)V"Y)28 dy

~ f IQ(y') II y 128- n-ady + 228 f 1 Q(y') II y I-n-a dy
Iyk! lyl;,!

which is clearly finite since QED (E) and 0 < ex < 2s.
Is if1(v) also a multiplier for the other p values, I < p < oo? To study this

question we use the Marcinkiewicz-Mikhlin multiplier theorem in its
improved form due to Hormander [6]:

Let if1 E L 00 and assume that

sup R-n f I Rli IDiif1(v) [2 dv < 00 (0 ~ Ij [ ~ [nI2] + I). (3.7)
R>O iR<lvk2R

Then if1 is a multiplier of type (U, U), 1 < p < 00.

Let j' and j" be n-tuples of nonnegative integers. By Leibniz's formula we
obtain

Diif1(V) = L Di' I v I-a DiN fQ(y') Iy I-n-a (e(ij2)v'Y - e-(ij2)v.y)28 dy
i'+j"=j

28 2XL (-l)m ( S) (i(s - m)y)i" ei(8-m)V'Y dy.
m=O m
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For Ij" I ,;:;; Ij I ,;:;; [nI2] + I < ex, the latter integral is absolutely convergent
(v fixed); indeed, the product of the factor (e(ij2)v'v - e-(i j 2)V'V)2'-WI

with yr . I y I-n-", is integrable in the neighborhood of the origin, whereas the
choice of ex guarantees the convergence at infinity. For 0 < ex ,;:;; [nI2] + 1,
the behavior at infinity causes difficulties and we do not consider this case
any further.

Now substituting I v I y = u and multiplying Di,p(V) by I v Ilil, we see
that there exists a constant C""n,.,Q = C such that I v Ilil IDi,p(V)[ ,;:;; C for
all j, 0';:;; Ij I ,;:;; [nI2] + 1; hence, in particular, the condition (3.7) is
satisfied. Applying Lemma 2.3, we obtain by the same reasoning as in the
proof of Theorem 2.l(a) the following

THEOREM 3.3. Let f E L",P, 1 <p < 00, and let ex> [nI2] + 1. IfQ E V(.E)
is homogeneous of degree zero, then

sup II J Q(y') [y I-n-", 3;'fdy II ,;:;; II flip.<>
•>0 Ivl;;.. P

(2s > ex) .

This holds for all ex > 0, ifp = 2.

Remark. Arguing as in the proof of Theorem 2.1(b), we see that this
hypersingular integral converges as E ---+ 0 and that the above estimate
remains valid for the limit. Wheeden [15, II] has shown this relation for
s = 1and 0 < ex < 2; his idea ofproof consists in applying the Marcinkiewicz
interpolation theorem directly to the operator flvl;;., Q(y') Iy [-n-", ... by
establishing the L2 boundedness of this transformation and the following
weak type (1.1) condition:

m \x; IJ Q(y') Iy I-n-", {f(x - y) - f(x)} dy I> , > 01
I Ivl;;.. \

For the other ex values he states in [15, I] some analogous results [instead of
a (2s)-th difference of f he uses a corresponding Taylor expansion of f]
under the condition that Q is infinitely differentiable, Following this
proof expanding Q into spherical harmonics one can show by pure
computation that ,p is a multiplier of type (U, U), I < p < 00, if Q satisfies
the conditions of the Calderon-Zygmund theory on singular integrals
(see, e.g., [6]).

We conclude with the observation that if a concrete example of Q is given
for which one can compute explicitly its Fourier transform, then it should
be quite easy to show that ,p(v) of (3.6) is a multiplier, e.g., if sgn Vk , vk/l v I
or arbitrary products of these are considered.
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