Imbedding Theorems for Spaces of Hypersingular Integrals and Bessel Potentials

WALTER TREBELS

Lehrstuhl A für Mathematik, Technological University of Aachen, Aachen, Germany

Communicated by P. L. Butzer

Received November 6, 1970

DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75TH BIRTHDAY

1. INTRODUCTION AND NOTATION

The main purpose of this paper is to give an approximation-theoretic approach to some imbedding problems treated in Euclidean *n* space by Stein [10] and Wheeden [15]. In particular, we are interested in equivalent norms for the space of Bessel potentials L_{α}^{p} for all $p, 1 \leq p \leq \infty$, and all $\alpha > 0$, in terms of hypersingular integrals; these results will be derived in a unified way.

Observing that $L_{\alpha}{}^{p}$ is the Favard class of a large set of radial approximation processes, we will show that the equivalence of the $L_{\alpha}{}^{p}$ norm with the norm involving appropriate hypersingular integrals can be interpreted as a saturation problem. Actually, the hypersingular integral in question (smoothened in some sense) can be rewritten as an approximation process on f minus fmultiplied by the optimal or saturation order of this process [see formulas (2.6) and (2.7)]. By verifying the hypothesis of a general saturation theorem (see Lemma 2.2) in this particular case, we first arrive at an equivalence relation with the $L_{\alpha}{}^{p}$ norm which, however, is not of the desired form. But by using some elementary estimates of Salem–Zygmund type [8] we can sharpen this result and obtain one implying Stein's [10] as well as parts of those of Wheeden [15].

An application of the Marcinkiewicz-Mikhlin multiplier theorem will establish a connection between coordinatewise and radial hypersingular integrals in the reflexive case 1 (see also [13]).

Furthermore, if in the same case $1 one inserts in the hypersingular integral a homogeneous function of degree zero, integrable on the unit sphere, the imbedding of this modified hypersingular integral into <math>L_{\alpha}^{p}$ corresponds to a multiplier problem in Fourier transform. This will be solved only for $\alpha > [n/2] + 1$ by applying the Marcinkiewicz-Mikhlin

multiplier theorem in its version due to Hörmander [6]. The case $O < \alpha \leq [n/2] + 1$ could be treated by tedious computations along the lines of Wheeden's [15] calculations, and will be omitted.

Here we are only interested in imbedding theorems for the space L_{α}^{p} , and therefore we restrict ourselves to norm statements; pointwise analogs may be obtained by properly modifying Wheeden's [15] proof.

Before proceeding further we list some conventions and notation to be used. Let N be the set of positive integers, $x = (x_1, ..., x_n)$ a point in Euclidean n space E_n , e^k the point x with all $x_j = 0$ except for x_k which is $1, j = (j_1, ..., j_n)$ an n-tuple of nonnegative integers. We set $x \cdot y = \sum_{k=1}^n x_k y_k$, $|x|^2 = x \cdot x$, x' = x/|x| (|x| > 0). Σ is the unit sphere |x| = 1, $x^j = x_1^{j_1} ... x_n^{j_n}$, and $|j| = j_1 + \cdots + j_n$. Constants will be denoted by C; one or more subscripts may indicate quantities on which it depends. $[\alpha]$ denotes the largest integer less than or equal to α . $L^p(E_n)$ is the space of (Lebesgue-) measurable functions f for which the norm $||f||_p$ is finite. Here

$$\|f\|_{p} = \left\{ \int_{E_{n}} |f(x)|^{p} dx \right\}^{1/p}, \quad 1 \leq p < \infty, \quad \|f\|_{\infty} = \underset{x \in E_{n}}{\operatorname{ess sup}} |f(x)|.$$

M is the set of bounded measures μ normed by $|| d\mu ||_1 = \int |d\mu|$ (integrals without limits are taken over all of E_n), *C* is the space of uniformly continuous bounded functions *f*, with $|| f ||_C = \sup_x |f(x)|$. Defining the convolution of $\mu \in M$ and $f \in L^p$ by

$$f * d\mu(x) = (2\pi)^{-n/2} \int f(x-y) d\mu(y),$$

we have $||f * d\mu||_{p} \leq ||f||_{p} ||d\mu||_{1}$ for $1 \leq p \leq \infty$.

The s-th difference $(s \in N)$ of a measurable function f and the s-th central difference of f, with increment $u \in E_n$, are given by

$$\Delta_u^{s}f(x) = \sum_{m=0}^{s} (-1)^m {\binom{s}{m}} f(x + (s - m)u), \qquad \overline{\Delta}_u^{s}f(x) = \Delta_u^{s}f\left(x - \frac{s}{2}u\right),$$

respectively. Finally, the Fourier-Stieltjes transform of $\mu \in M$ and the Fourier transform of $f \in L^1$ are defined by

$$[d\mu]^{(v)} = (2\pi)^{-n/2} \int e^{-iv \cdot x} d\mu(x), \qquad f^{(v)} = (2\pi)^{-n/2} \int e^{-iv \cdot x} f(x) \, dx,$$

respectively.

Let $\alpha > 0$; then

$$G_{\alpha}(x) = [2^{(\alpha-2)/2} \Gamma(\alpha/2)]^{-1} |x|^{(\alpha-n)/2} K_{(n-\alpha)/2} (|x|)$$

is called the Bessel kernel of order α ; here ($\zeta \ge 0$),

$$K_{\beta}(\zeta) = \frac{\pi}{2} \frac{I_{-\beta}(\zeta) - I_{\beta}(\zeta)}{\sin \beta \pi}, \qquad I_{\beta}(\zeta) = \sum_{m=0}^{\infty} \frac{(\zeta/2)^{\beta+2m}}{m! \ \Gamma(\beta+m+1)}$$

are the modified Bessel functions of order β of the third and first kind, respectively.

 G_{α} is a nonnegative, integrable function [7, p. 341] with $\int G_{\alpha}(x) dx = (2\pi)^{n/2}$; its Fourier transform is given by

$$G_{\alpha}(v) = (1 + |v|^2)^{-\alpha/2}.$$

With the aid of the *n*-dimensional Bessel kernel G_{α} , the space of radial Bessel potentials is defined by $(\alpha > 0)$

$$L_{\alpha}^{p} = \left\{ f \in L^{p}; f = G_{\alpha} * \left\{ \begin{array}{ll} d\mu, \ \mu \in M, \ \text{if} \quad p = 1 \\ h, \ h \in L^{p}, \ \text{if} \quad 1 (1.1)$$

As usual, L_{α}^{p} is normed by

$$||f||_{1,\alpha} = ||d\mu||_1 (p = 1), ||f||_{p,\alpha} = ||h||_p (1$$

This (radial) space L_{α}^{p} will be compared, in case $1 , with (<math>\gamma_{k} > 0$)

$$L^{p}_{(\gamma_{1},...,\gamma_{n})} = \{ f \in L^{p}; f = ({}_{1}G_{\gamma_{k}} * h_{k})_{(k)} , \\ h_{k} \in L^{p}, \quad 1 (1.2)$$

(For the sake of simplicity we omit the case p = 1.) Here ${}_1G_{\alpha}$ is the onedimensional Bessel kernel, and

$$({}_{1}G_{\alpha} * g)_{(k)}(x) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} g(x - \eta e^{k})_{1}G_{\alpha}(\eta) d\eta$$

is the convolution in the k-th coordinate. $L^{p}_{(\gamma_{1},\ldots,\gamma_{n})}$ is normed by

$$||f||_{p,(\gamma_1,\ldots,\gamma_n)} = \sum_{k=1}^n ||h_k||_p.$$

2. Hypersingular Integrals on L^p , $1 \leq p \leq \infty$

In this section we introduce the hypersingular integral

$$\int |y|^{-n-\alpha} \overline{\Delta}_{\boldsymbol{y}}^{2s} f(\boldsymbol{x}) \, d\boldsymbol{y}, \qquad (2.1)$$

204

equip it with a suitable norm, and show that this norm is equivalent to the $L_{\alpha}{}^{p}$ norm for all $\alpha > 0$ and all p, $1 \leq p \leq \infty$. Actually we shall prove the following

THEOREM 2.1. The following norms on L_{α}^{p} , are equivalent for $n = 1, 2, ..., \alpha > 0$:

- (a) In case $1 \leq p \leq \infty$:
 - (i) $||f||_{p,\alpha}$,

(ii) $||f||_{p} + \sup_{\tau>0} ||\int |y|^{-n-\alpha} \overline{\Delta}_{y}^{2s} K_{\tau} * f \, dy ||_{p}$ (0 < α < 2s, s $\in N$), where the smoothening kernel K_{τ} , a linear combination of Weierstrass kernels, is given by

$$K_{\tau}(u) = -\sum_{m=1}^{2s} (-1)^m \binom{2s}{m} (2\tau m^2)^{-n/2} \exp\{-|u|^2/4\tau m^2\},$$

(iii) $||f||_p + \sup_{\epsilon>0} ||\int_{|y|\geq\epsilon} |y|^{-n-\alpha} \overline{\mathcal{J}}_y^{2s} f dy||_p$.

(b) In case $1 , (iii) converges as <math>\epsilon \rightarrow 0^+$, and we have as another equivalent norm

(iii)*
$$||f||_{p} + ||\int |y|^{-n-\alpha} \overline{\Delta}_{p}^{2s} f \, dy ||_{p}$$

This remains true for p = 1, provided the measure $\mu \in M$ in (1.1) is absolutely continuous.

Remark. Since the kernel $|y|^{-n-\alpha}$ and the domains of integration are radial, we may replace the (2s)-th central difference $\overline{A}_{y}^{2s} f$ in (iii) and (iii)* by

$$\sum_{m=0}^{s} (-1)^{k} \binom{2s}{m} f(x + (s - m)y) - \frac{1}{2} (-1)^{s} \binom{2s}{s} f(x).$$

In this form for s = 1, $0 < \alpha < 2$ and 1 , the equivalence of (i)and (iii)* is already in Stein [10]. Wheeden [15] proves Stein's theorem for $<math>1 \leq p \leq \infty$ [in the modified version of (iii) if $p = \infty$] and can replace $|y|^{-n-\alpha}$ by $\Omega(y') |y|^{-n-\alpha}$ in case 1 (This will be discussed in $Section 3). He also states an equivalence relation in case <math>\alpha \ge 2$, whereby his hypersingular integral involves as regularization process a Taylor expansion of f whereas a higher difference of f will be used by us. The advantage of our approach is that we need not distinguish between various α intervals and different p values. With the help of these general results we then obtain more specific ones depending on further properties, such as the reflexivity of L^p (1 or, in case <math>p = 1, the absolute continuity of μ .

Proof of Theorem 2.1(a). First we show the equivalence of (i) and (ii) by applying a general saturation theorem. To this end, we observe that

$$I_{\tau}(x) = \int |y|^{-n-\alpha} \bar{d}_{y}^{2s} K_{\tau}^{*} f(x) \, dy \qquad (2.2)$$

is absolutely convergent for all $x (\tau > 0 \text{ fixed})$ and all $f \in L^p$, $1 \le p \le \infty$. Indeed, split up $I_{\tau}(x)$ into two terms

$$\left(\int_{|y| \leq 1} + \int_{|y| \geq 1}\right) |y|^{-n-\alpha} \bar{\mathcal{A}}_{y}^{2s} K_{\tau} * f(x) \, dy = I_{\tau}^{1}(x) + I_{\tau}^{2}(x).$$

Obviously, I_{τ}^2 converges absolutely, since $K_{\tau} \in L^{p'}$ and thus

$$\|\overline{A}_{y}^{2s}K_{\tau}*f(x)\| \leq \sum_{m=0}^{2s} {2s \choose m} \|K_{\tau}\|_{p'} \|f\|_{p}$$

by Hölder's inequality. Concerning I_{τ^1} , let us expand $\overline{\Delta}_{y}^{2s} K_{\tau}$ into a Taylor series at the point y = 0. On account of the identity

$$\sum_{m=0}^{2s} (-1)^m \binom{2s}{m} (s-m)^l = 0 \qquad (0 \le l \le 2s-1), \tag{2.3}$$

all derivatives of $\overline{A}_{y}^{2s} K_{\tau}$ of order less than 2s vanish at y = 0. Therefore,

$$\begin{split} \bar{\mathcal{A}}_{y}^{2s} K_{\tau} &= C_{s} \sum_{m=0}^{2s} (-1)^{m} \binom{2s}{m} \\ &\times \int_{0}^{1} (1-\eta)^{2s-1} \sum_{j} y^{j} D_{y}^{j} K_{\tau}(x+(s-m) y\eta) \, d\eta, \end{split}$$
(2.4)

where the last summation is extended over all permutations of j with |j| = 2s. Observing that $|y^j| \leq |y|^{2s}$ and that $D^j K_{\tau}$ belongs to all $L^{p'}$ spaces, $1 \leq p' \leq \infty$, we can show as before that I_{τ}^{1} , too, converges absolutely for fixed $\tau > 0$.

To show the equivalence of (i) and (ii) we now need the following saturation result (see [14]):

LEMMA 2.2. Let $1 \leq p \leq \infty$; let $f \in C$ in case $p = \infty$, and let $f \in L^p$ in case $1 \leq p < \infty$. Define, for $\rho > 0$

$$I_{\rho}(f;x) = (2\pi)^{-n/2} \int f(x-y) \, d\nu(\rho y), \quad \nu \in M, \quad \int d\nu = (2\pi)^{n/2}.$$

If v satisfies the condition

there exist constants
$$\alpha > 0$$
, $c \neq 0$ and a measure $\lambda \in M$ with
 $\int d\lambda = (2\pi)^{n/2}$ such that
$$(2.5)$$

$$[d\nu]^{\wedge}(v) - 1 = c[d\lambda]^{\wedge}(v) \mid v \mid^{\alpha} \qquad (v \in E_n),$$

then

$$c_{1} ||f||_{p,\alpha} \leq ||f||_{p} + \sup_{\rho > 0} ||\rho^{\alpha} \{ I_{\rho}(f; \cdot) - f \} ||_{p} \leq c_{2} ||f||_{p,\alpha}$$
(2.6)

for some constants c_1 , $c_2 > 0$, both independent of f.

In order to apply Lemma 2.2, comparing the hypersingular integral in 2.1 (a-ii) with the second expression in (2.6), we observe that I_{τ} has to be of type $\rho^{\alpha} \{I_{\rho}(f; \cdot) - f\}$. Set $\rho = \tau^{-1/2}$ and

$$I_{\tau}(x) = \tau^{-\alpha/2} \{ f * d\nu_{\alpha}(\tau^{-1/2} \cdot)(x) - f(x) \}, \qquad (2.7)$$

the measure ν_{α} being given by (A any Lebesgue-measurable set)

$$\nu_{\alpha}(A) = \int_{A} \left\{ \int |y|^{-n-\alpha} \overline{\Delta}_{y}^{2s} K_{1}(u) \, dy \, du + d\sigma \right\}, \qquad (2.8)$$

where σ is the discrete measure with mass $(2\pi)^{n/2}$ at the origin. Since by the same reasoning as before $(K_1, D^j K_1$ are integrable on E_n)

$$\int |y|^{-n-\alpha} dy \int \bar{\mathcal{A}}_{\boldsymbol{v}}^{2s} K_1(\boldsymbol{u}) d\boldsymbol{u}$$
 (2.9)

is absolutely convergent, it is obvious by Fubini's theorem that $\nu_{\alpha} \in M$. Also, ν_{α} is normalized; for σ is normalized and the inner integral in (2.9) vanishes on account of the identity (2.3) for l = 0 and the normalization of K_1 . It remains to verify condition (2.5): since $[d\sigma]^{\wedge}(v) = 1$,

$$[d\nu_{\alpha}]^{\wedge}(v) - 1 = (2\pi)^{-n/2} \iint \overline{\Delta}_{y}^{2s} K_{1}(u) \mid y \mid^{-n-\alpha} dy \ e^{-iv \cdot u} \ du.$$

An interchange of integrations gives

$$[d\nu_{\alpha}]^{\wedge}(v) - 1 = K_{1}^{\wedge}(v) \int |y|^{-n-\alpha} (e^{(i/2)v \cdot y} - e^{-(i/2)v \cdot y})^{2s} dy. \quad (2.10)$$

If $n \ge 2$, we can subject the latter integral to an orthogonal transformation (cf. [2, p. 70]) and obtain

$$[d\nu_{\alpha}]^{\wedge}(v) - 1 = \int |y|^{-n-\alpha} (2i\sin(y_1/2))^{2s} dy K_1^{\wedge}(v) |v|^{\alpha}.$$

Since this relation is achieved for n = 1 by a simple substitution, condition (2.5) is satisfied and hence (i) and (ii) of Theorem 2.1 are equivalent.

In case $n \ge 2$, we could replace $\overline{\mathcal{A}}_{y}^{2s}$ by \mathcal{A}_{y}^{l} $(l \in N, 0 < \alpha < l)$; but then we would have to distinguish between the cases n = 1 and $n \ge 2$.

It remains to show the equivalence with (iii). Obviously, by Fatou's lemma,

$$\| I_{\tau} \|_{p} \leq \liminf_{\epsilon \to 0+} \left\| \int_{|y| \geq \epsilon} |y|^{-n-\alpha} \overline{\mathcal{J}}_{y}^{2s} K_{\tau} * f(x) dy \right\|_{p}$$

$$\leq \liminf_{\epsilon \to 0+} \| K_{\tau} \|_{1} \left\| \int_{|y| \geq \epsilon} |y|^{-n-\alpha} \overline{\mathcal{J}}_{y}^{2s} f dy \right\|_{p}, \qquad (2.11)$$

and since $||K_{\tau}||_1 \leq \sum_{m=1}^{2s} {2\pi \choose m} (2\pi)^{n/2}$, we have estimated (ii) by (iii).

To prove the converse, we proceed analogously, relying on Butzer-Görlich [3] and Sunouchi [11]. We have

$$\left\| \int_{\|y\| \ge \sqrt{\tau}} |y|^{-n-\alpha} \bar{\Delta}_{y}^{2s} f \, dy \right\|_{p} \le \left\| \int_{\|y\| \ge \sqrt{\tau}} |y|^{-n-\alpha} \bar{\Delta}_{y}^{2s} \{K_{\tau} * f - f\} \, dy \right\|_{p}$$

$$+ \left\| \int_{\|y\| \le \sqrt{\tau}} |y|^{-n-\alpha} \bar{\Delta}_{y}^{2s} K_{\tau} * f \right\|_{p} + \|I_{\tau}\|_{p} \equiv I_{1} + I_{2} + I_{3}$$

$$(2.12)$$

so that only I_1 and I_2 have to be estimated by (ii) or, equivalently, by (i). To this end, we need two approximation-theoretical arguments.

LEMMA 2.3. If $f \in L_{\alpha}^{p}$, for $0 < \alpha < 2s$, $s \in N$, then $\|\overline{A}^{2s}(K + f - f)\| \leq C - \tau^{\alpha/2} \|f\| \qquad (2.13)$

$$\|\mathcal{\Delta}_{\mathfrak{g}}^{*}\{\mathbf{K}_{\tau}*f-f\}\|_{\mathfrak{p}} \leq C_{\mathfrak{a},\mathfrak{s}}\,\tau^{\mathfrak{a}/2}\,\|f\|_{\mathfrak{p},\mathfrak{a}}\,; \tag{2.13}$$

$$\|\bar{J}_{y}^{2s}K_{\tau}*f\|_{p} \leqslant C_{\alpha,s}^{*} \tau^{(\alpha-2s)/2} \|y\|^{2s} \|f\|_{p,\alpha}.$$
(2.14)

In view of this lemma, the proof of part (a) of Theorem 2.1 is now complete since, by the generalized Minkowski inequality and formula (2.13),

$$I_1 \leqslant C_{\alpha,s} \tau^{\alpha/2} \|f\|_{p,\alpha} \int_{|y| \geqslant \sqrt{\tau}} |y|^{-n-\alpha} dy = C_{\alpha,s,n} \|f\|_{p,\alpha},$$

and, analogously, by formula (2.14),

$$I_{2} \leqslant C_{\alpha,s}^{*} \tau^{(\alpha-2s)/2} \|f\|_{p,\alpha} \int_{|y| \leqslant \sqrt{\tau}} |y|^{2s-\alpha-n} dy = C_{\alpha,s,n} \|f\|_{p,\alpha}.$$

Proof of Lemma 2.3. By a straightforward calculation,

$$K_{\tau} * f(x) - f(x) = -(4\pi\tau)^{-n/2} \int \mathcal{\Delta}_{\psi}^{2s} f(x) \exp\{-|y|^2/4\tau\} \, dy$$

208

and hence, since $f \in L_{\alpha}^{p}$ implies

$$\|\mathcal{\Delta}_{y}^{l}f\|_{p} \leqslant C \|y|^{\alpha} \|f\|_{p,\alpha} \qquad (0 < \alpha < l)$$

$$(2.15)$$

(see, e.g., [14]), relation (2.13) follows by the generalized Minkowski inequality. Concerning (2.14), we remark that as a special case of a theorem of Butzer-Scherer [4,5] one has

$$\|D^{j}K_{\tau}*f\|_{p} \leq C_{\alpha,s} \tau^{(\alpha-2s)/2} \|f\|_{p,\alpha} \quad \text{for} \quad |j| = 2s. \quad (2.16)$$

Hence, a Taylor expansion of $\overline{\mathcal{J}}_{y}^{2s}K_{\tau} * f$ at y = 0 gives, analogously to (2.4),

$$\begin{split} \bar{\mathcal{A}}_{y}^{2s} K_{\tau} * f(x) &= C_{s} \sum_{m=0}^{2s} (-1)^{m} \binom{2s}{m} \\ &\times \int_{0}^{1} (1-\eta)^{2s-1} \sum_{j} y^{j} D_{y}^{j} K_{\tau} * f(x+(s-m) y\eta) \, d\eta. \end{split}$$

The relations (2.16) and $|y^i| \leq |y|^{2s}$ yield the desired inequality (2.14) with the aid of the generalized Minkowski inequality.

Now we prove (b) of Theorem 2.1 by an application of the Banach-Steinhaus theorem. $L_{\alpha}{}^{p}$ and L^{p} are Banach spaces with respect to the norms $\|f\|_{p,\alpha} = \|h\|_{p}$ [where $\mu(A) = \int_{A} h(x) dx$ in case p = 1] and $\|f\|_{p}$, respectively; the operators $\int_{\|y\| \ge \epsilon} |y|^{-n-\alpha}$... on $L_{\alpha}{}^{p}$ into L^{p} , $1 \le p < \infty$, are uniformly bounded by part (a); if $f \in L_{\beta}{}^{p}$, $\beta > \alpha$, then we have strong convergence because [cf. (2.15)]

$$\left\|\int_{\epsilon_1\leqslant |y|\leqslant \epsilon_2}|y|^{-n-\alpha}\bar{\mathcal{A}}_y^{2s}f\,dy\right\|_p\leqslant C_{\beta,s}\|f\|_{p,\beta}\int_{\epsilon_1\leqslant |y|\leqslant \epsilon_2}|y|^{\beta-\alpha-n}\,dy$$

which tends to zero as $\epsilon_2 \rightarrow 0$; thus, on account of the completeness of the L^p spaces, there clearly exists $g \in L^p$ such that

$$g = s-\lim_{\epsilon \to 0} \int_{|y| \ge \epsilon} |y|^{-n-\alpha} \overline{\Delta}_y^{2s} f \, dy.$$

Since L_{β}^{p} is dense in L_{α}^{p} , $1 \leq p < \infty$, the Banach-Steinhaus theorem assures convergence for all $f \in L_{\alpha}^{p}$. Since $\lim_{\epsilon \to 0} || ||_{p} \leq \sup_{\epsilon > 0} || ||_{p}$ and (2.11) holds, the equivalence of (i) and (iii)* follows.

Remark 2.4. A result analogous to Theorem 2.1(a), in the periodic, onedimensional case, was proved by Sunouchi [12], applying a counterpart of Lemma 2.2. He shows that

$$\int_{\epsilon}^{\infty} y^{-1-\alpha} \bar{\Delta}_{y}^{2s} f \, dy = C \, \epsilon^{-\alpha} \{ f * k_{\epsilon} - f \}$$
(2.17)

and verifies condition (2.5) for the kernel k_{ϵ} .

3. The Reflexive Case 1

In this concluding section we shall obtain more detailed results in the case 1 . To this end we first compare the above radial hypersingular integral with a so-called coordinatewise one, i.e., an integral of the form

$$\int_{\epsilon}^{\infty} \eta^{-1-\alpha} \bar{\mathcal{A}}_{\eta e^k}^{2s} f(x) \, d\eta.$$

We have (for 1 see [13])

THEOREM 3.1. The following expressions are norms on L_{α}^{p} , $1 , <math>\alpha > 0$, equivalent to those of (i)-(iii)* in Theorem 2.1:

(iv) $||f||_{p,(\alpha,...,\alpha)}$,

(v)
$$||f||_p + \sum_{k=1}^n \sup_{\epsilon>0} \left\| \int_{\epsilon}^{\infty} \eta^{-1-\alpha} \overline{\Delta}_{\eta e^k}^{2s} f d\eta \right\|_p$$
.

Proof. The equivalence of (i) and (iv) follows readily from Nikolskii's book [7, p. 74]; he has shown, using the Marcinkiewicz-Mikhlin multiplier theorem, that

$$(1 + v_k^2)^{\alpha/2} (1 + |v|^2)^{-\alpha/2} \quad (k = 1, ..., n),$$
$$(1 + |v|^2)^{\alpha/2} \left(\sum_{k=1}^n (1 + v_k^2)^{\alpha/2}\right)^{-1}$$

are multipliers of type (L^p, L^p) , 1 . Thus, it remains only to establish the equivalence of (iv) and (v). This can be done with the help of the above multiplier theorem by comparing norm (ii) of Theorem 2.1 with a corresponding coordinatewise one for each coordinate, and then using the same estimates of Salem-Zygmund type as before.

However, we prefer a proof depending on a saturation theorem for singular integrals with product kernels and n parameters $r = (r_1, ..., r_n)$:

$$I_r(f;x) = (2\pi)^{-n/2} \int f(x-y) \prod_{k=1}^n d\nu_k(r_k y_k), \qquad (3.1)$$

where

$$\nu_k \in M(E_1)$$
 and $\int_{-\infty}^{\infty} d\nu_k = \sqrt{2\pi}$.

For this approximation process, the following saturation result holds:

LEMMA 3.2. Let $1 \le p \le \infty$; let $f \in C$ in case $p = \infty$ and let $f \in L^p$ in case $1 \le p < \infty$. If the one-dimensional measures v_k of formula (3.1) satisfy the condition

there exist constants $\gamma_k > 0$, $c_k \neq 0$ and measures $\lambda_k \in M(E_1)$ normalized to satisfy $\int_{-\infty}^{\infty} d\lambda_k = \sqrt{2\pi}$ such that, for k = 1, ..., n, (3.2)

 $[d\nu]^{\wedge}(\zeta) - 1 = c_k [d\lambda_k]^{\wedge}(\zeta) \mid \zeta \mid^{\gamma_k} \quad for \ all \ \zeta \in E_1 \ ,$

then the following norms are equivalent:

(i) $||f||_{p,(\gamma_1,...,\gamma_n)}$,

(ii)
$$||f||_{p} + \sum_{k=1}^{n} \sup_{r_{k}>0} ||r_{k}^{\gamma_{k}} \{I_{r_{k}}(f; \cdot) - f\}||_{p}$$
,

where

$$I_{r_k}(f; x) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} f(x - \eta e^k) \, d\nu_k(r_k \eta).$$

As was shown by Berens-Nessel [1], such saturation theorems involving singular integrals with decomposable product kernels are essentially one dimensional because the condition

$$\|I_r(f; \cdot) - f\|_p = O\left(\sum_{k=1}^n r_k^{-\gamma_k}\right)$$

is equivalent to the following set of conditions:

$$\|I_{r_k}(f; \cdot) - f\|_p = O(r_k^{-\gamma_k}) \qquad (k = 1, ..., n).$$

Thus, with slight modifications, the proof of Lemma 2.2 in case n = 1 gives the desired result for each $I_{r_{n}}(f; \cdot)$.

Now—as pointed out in Remark 2.4—Sunouchi [12] has already proved the representation (2.17) and condition (3.2), so that the equivalence of (iv) and (v) is obvious if we take $\gamma_k = \alpha$, k = 1,..., n.

Now let us see what happens if we replace the factor $|y|^{-n-\alpha}$ in (2.1) by $\Omega(y') |y|^{-n-\alpha}$, where Ω is a homogeneous function of degree zero, integrable on the unit sphere. First we consider

$$\int \Omega(y') |y|^{-n-\alpha} \overline{\mathcal{A}}_{y}^{2s} K_{\tau} * f(x) dy \qquad (0 < \alpha < 2s).$$
(3.3)

As before, this hypersingular integral converges absolutely for fixed $\tau > 0$.

For sufficiently smooth functions f (e.g., infinitely differentiable and rapidly decreasing) we can take its Fourier transform, obtaining

$$K_{\tau}^{(v)} f^{(v)} \int \Omega(y') |y|^{-n-\alpha} \left(e^{(i/2)v \cdot y} - e^{-(i/2)v \cdot y} \right)^{2s} dy.$$
(3.4)

On the other hand, for such smooth functions f, we have as the Fourier transform of $I_r(x)$ -calculated as in the proof of Theorem 2.1-

$$K_{\tau}^{(v)} f^{(v)} | v |^{\alpha} \int | y |^{-n-\alpha} \left(e^{(i/2)y_1} - e^{-(i/2)y_1} \right)^{2s} dy.$$
(3.5)

Comparison of formulas (3.4) and (3.5) suggests the interpretation [by inserting $|v|^{\alpha} |v|^{-\alpha}$ in (3.4)] of

$$\psi(v) = |v|^{-\alpha} \int \Omega(y') |y|^{-n-\alpha} \left(e^{(i/2)v \cdot y} - e^{-(i/2)v \cdot y} \right)^{2s} dy \qquad (3.6)$$

as a multiplier of type (L^p, L^p) . Now $\psi(v)$ is a multiplier of type (L^2, L^2) for all $\alpha > 0$ because $(v' \in \Sigma$, the unit sphere)

$$|\psi(v)| = |\int \Omega(y') |y|^{-n-\alpha} (e^{(i/2)v' \cdot y} - e^{-(i/2)v' \cdot y})^{2s} dy$$

$$\leq \int_{|y| \leq 1} |\Omega(y')| |y|^{2s-n-\alpha} dy + 2^{2s} \int_{|y| \geq 1} |\Omega(y')| |y|^{-n-\alpha} dy$$

which is clearly finite since $\Omega \in L^1(\Sigma)$ and $0 < \alpha < 2s$.

Is $\psi(v)$ also a multiplier for the other p values, 1 ? To study this question we use the Marcinkiewicz-Mikhlin multiplier theorem in its improved form due to Hörmander [6]:

Let $\psi \in L^{\infty}$ and assume that

$$\sup_{R>0} R^{-n} \int_{\frac{1}{2}R \leqslant |v| \leqslant 2R} |R^{|j|} D^{j} \psi(v)|^{2} dv < \infty \quad (0 \leqslant |j| \leqslant [n/2] + 1). \quad (3.7)$$

Then ψ is a multiplier of type (L^p, L^p) , 1 .

Let j' and j'' be *n*-tuples of nonnegative integers. By Leibniz's formula we obtain

$$D^{j}\psi(v) = \sum_{j'+j''=j} D^{j'} |v|^{-\alpha} D^{j''} \int \Omega(y') |y|^{-n-\alpha} (e^{(i/2)v \cdot y} - e^{-(i/2)v \cdot y})^{2s} dy$$

= $\sum (D^{j'} |v|^{-\alpha}) \int \Omega(y') |y|^{-n-\alpha}$
 $\times \sum_{m=0}^{2s} (-1)^m {2s \choose m} (i(s-m)y)^{j''} e^{i(s-m)v \cdot y} dy.$

For $|j''| \leq |j| \leq [n/2] + 1 < \alpha$, the latter integral is absolutely convergent (*v* fixed); indeed, the product of the factor $(e^{(i/2)v \cdot y} - e^{-(i/2)v \cdot y})^{2s-|j''|}$ with $y^{j''} \cdot |y|^{-n-\alpha}$ is integrable in the neighborhood of the origin, whereas the choice of α guarantees the convergence at infinity. For $0 < \alpha \leq [n/2] + 1$, the behavior at infinity causes difficulties and we do not consider this case any further.

Now substituting |v|y = u and multiplying $D^{j}\psi(v)$ by $|v|^{|j|}$, we see that there exists a constant $C_{\alpha,n,s,\Omega} = C$ such that $|v|^{|j|} |D^{j}\psi(v)| \leq C$ for all $j, 0 \leq |j| \leq [n/2] + 1$; hence, in particular, the condition (3.7) is satisfied. Applying Lemma 2.3, we obtain by the same reasoning as in the proof of Theorem 2.1(a) the following

THEOREM 3.3. Let $f \in L_{\alpha}^{p}$, $1 , and let <math>\alpha > [n/2] + 1$. If $\Omega \in L^{1}(\Sigma)$ is homogeneous of degree zero, then

$$\sup_{\epsilon>0} \left\| \int_{|y|\geq\epsilon} \Omega(y') |y|^{-n-\alpha} \overline{\mathcal{A}}_{y}^{2s} f \, dy \right\|_{p} \leq \|f\|_{p,\alpha} \qquad (2s>\alpha)$$

This holds for all $\alpha > 0$, if p = 2.

Remark. Arguing as in the proof of Theorem 2.1(b), we see that this hypersingular integral converges as $\epsilon \to 0$ and that the above estimate remains valid for the limit. Wheeden [15, II] has shown this relation for s = 1 and $0 < \alpha < 2$; his idea of proof consists in applying the Marcinkiewicz interpolation theorem directly to the operator $\int_{|y| \ge \epsilon} \Omega(y') |y|^{-n-\alpha}$... by establishing the L^2 boundedness of this transformation and the following weak type (1.1) condition:

$$m\left\{x; \left|\int_{|y|\geq\epsilon} \Omega(y') |y|^{-n-\alpha} \{f(x-y) - f(x)\} dy\right| > \zeta > 0\right\}$$

$$\leq \operatorname{const} \zeta^{-1} ||f||_{1,\alpha}.$$

For the other α values he states in [15, I] some analogous results [instead of a (2s)-th difference of f he uses a corresponding Taylor expansion of f] under the condition that Ω is infinitely differentiable. Following this proof expanding Ω into spherical harmonics one can show by pure computation that ψ is a multiplier of type (L^p, L^p) , $1 , if <math>\Omega$ satisfies the conditions of the Calderón-Zygmund theory on singular integrals (see, e.g., [6]).

We conclude with the observation that if a concrete example of Ω is given for which one can compute explicitly its Fourier transform, then it should be quite easy to show that $\psi(v)$ of (3.6) is a multiplier, e.g., if sgn v_k , $v_k/|v|$ or arbitrary products of these are considered.

ACKNOWLEDGMENTS

The author thanks Professors P. L. Butzer and R. J. Nessel for their careful reading of the manuscript.

References

- 1. H. BERENS AND R. J. NESSEL, Contributions to the theory of saturation for singular integrals in several variables, IV, Nederl. Akad. Wetensch. Indag. Math. 30 (1968), 325-335.
- 2. S. BOCHNER AND K. CHANDRASEKHARAN, "Fourier Transforms," Princeton, 1949.
- 3. P. L. BUTZER AND E. GÖRLICH, Zur Charakterisierung von Saturationsklassen in der Theorie der Fourierreihen, *Tôhoku Math. J.* 17 (1965), 29–54.
- P. L. BUTZER AND K. SCHERER, On the fundamental approximation theorems of D. Jackson, S. N. Bernstein and theorems of M. Zamansky and S. B. Steckin, *Aequationes Math.* 3 (1969), 170–185.
- 5. P. L. BUTZER AND K. SCHERER, Jackson and Bernstein-type inequalities for families of commutative operators in Banach spaces, J. Approximation Theory 5 (1972), 308-342.
- L. HÖRMANDER, Estimates for translation invariant operators in L²-spaces, Acta Math. 104 (1960), 93-140.
- 7. S. M. NIKOLSKII, "Approximation of Functions of Several Variables and Imbedding Theorems" (Russian), Isdat. Nauka, Moscow, 1969.
- 8. R. SALEM AND A. ZYGMUND, Capacity of sets and Fourier series, *Trans. Amer. Math. Soc.* 59 (1946), 23-41.
- 9. H. S. SHAPIRO, "Smoothing and Approximation of Functions," Matscience Report 55, Madras, 1967.
- 10. E. M. STEIN, The characterization of functions arising as potentials, *Bull. Amer. Math.* Soc. 67 (1961), 102-104.
- G. SUNOUCHI, Characterization of certain classes of functions, *Tôhoku Math. J.* 14 (1962), 127-134.
- 12. G. SUNOUCHI, Direct theorems in the theory of approximation, Acta Math. Acad. Sci. Hungar. 20 (1969), 409-420.
- W. TREBELS, Einige n-parametrige Approximationsverfahren und Charakterisierung ihrer Favardklassen, in Forschungsbericht Nr. 2078 des Landes Nordrhein-Westfalen, pp. 29-59, Westdeutscher Verlag, Köln and Opladen, 1970.
- 14. W. TREBELS, Generalized Lipschitz conditions and Riesz derivatives on the space of Bessel potentials L_{α}^{p} I, Applicable Anal. 1 (1971), 75-99.
- R. L. WHEEDEN, On hypersingular integrals and Lebesgue spaces of differentiable functions I, II, Trans. Amer. Math. Soc. 134 (1968), 421-435; 139 (1969), 37-53.